
Towards a Flexible UI Model for Automotive
Human-Machine Interaction

Guido de Melo, Frank Honold,
Michael Weber
University of Ulm

Institute of Media Informatics
89081 Ulm

{guido.de-melo, frank.honold,
michael.weber}@uni-ulm.de

Mark Poguntke, André Berton
Daimler AG

Research and Development
Infotainment and Telematics

89081 Ulm
{mark.poguntke,

andre.berton}@daimler.com

ABSTRACT
In this paper we present an approach for creating user in-
terfaces from abstract representations for the automotive
domain. The approach is based on transformations between
different user interface abstraction levels. Existing user in-
terface representation methods are presented and evaluated.
The impact of specific requirements for automotive human-
machine interaction is discussed. Considering these require-
ments a process based on transformation rules is outlined to
allow for flexible integration of external infotainment appli-
cations coming from mobile devices or web sources into the
in-car interaction environment.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

Keywords
human-machine interaction, user interface modeling, user
interface generation, UML, Cameleon Reference Framework

1. INTRODUCTION
1.1 Overview
The increasing development and ubiquity of infotainment
applications plays an important role for automotive manu-
facturers. Mobile devices, like smart phones or mp3-players,
are widespread and increasingly used. In an in-car environ-
ment the use of external devices distracts the driver from the
important task of driving. Also, there are legal regulations in
many countries that prohibit the use of mobile devices while
driving. The convenient integration of different external de-
vices and services, such as smart phones and on-line services,
in the in-car environment is desired. Since the development
time and life cycle of automotive software is usually much
longer than the life cycle of consumer electronics or web-
based services, a flexible solution for the adaption of new

Copyright held by authors
AutomotiveUI’09, September 21-22, 2009, Essen, Germany
ACM 978-1-60558-571-0/09/009

applications to the existing automotive human-machine in-
terface (HMI) is required. In order to integrate applications
of different devices to the automotive HMI, it is necessary to
map the device capabilities to the interaction devices within
the automotive environment, e. g. central control unit and
head-unit display. Additionally, voice control of external
applications should be possible via the in-car speech dialog
system.

Each automotive manufacturer provides their own HMI spe-
cified by colors, images, font styles, interaction concepts and
flows. Since there are important automotive-specific require-
ments like font size settings for minimal driver distraction,
the aim is to provide an appropriate HMI concept meeting
these requirements, e. g. according to the European State-
ment of Principles on HMI for in-vehicle information and
communication systems (ESoP). Also, for safety reasons,
and as a distinctive feature, the control over the automo-
tive HMI has to be completely handeled by the car software.
The latter is hard to achieve if external applications are to be
integrated which provide their own user interfaces. More ab-
stract representations of user interface concepts build a basis
for different concrete user interfaces. Devices should provide
abstract descriptions of their functionality and capabilities.
And the head-unit would transform these descriptions to
the automotive HMI as needed. Thus, the integration of ex-
ternal devices would be possible after deployment of the car
software, and the integrated system would still be controlled
by the manufacturer.

1.2 Scenario
The simple example of integrating a portable music player
into the head-unit HMI illustrates important issues to be
solved. The driver or passenger intends to use any player in
the car. This may be a very simple device providing basic
audio player functionalities or a more complex device pro-
viding additional features like album cover presentations,
different playlists, a dynamic play order based on similarity
of songs and so on. Current car head-units provide their own
audio player with mp3-support. Connecting an mp3-player
to the car will initiate the car’s audio player which is then
used to play the songs contained on the device. However,
device-specific interaction features are not integrated if they
are unknown to the head-unit. Furthermore, completely un-
known applications like a calendar cannot be integrated at
all.

Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany

47

2. ABSTRACT USER INTERFACE REPRE-
SENTATIONS

In order to achieve a seamless integration, the device capa-
bilities and interaction possibilities have to be transferred
to the head-unit which then processes this information to
map it to the car-specific interaction and presentation de-
vices. Due to the diversity of interaction concepts, e. g. hard
keys, touchscreens, speech interfaces or motion sensors, the
representation of device capabilities has to be in an abstract
manner. This ensures that the interaction possibilities can
be transferred independent of specific user interface concepts
or modalities. We use the term UI model for an abstract rep-
resentation of a user interface which is independent of a cer-
tain implementation. Requirements for a flexible UI model
are presented in the following. Based on these, existing UI
representation techniques are presented and evaluated.

2.1 Requirements
A flexible UI model should fulfill a number of requirements.
Van den Bergh and Coninx described some less formal re-
quirements for the working environment [4]. The environ-
ment shall be expressive: The model shall be comprehen-
sible and allow for complex relationships without becoming
cumbersome. Tool support shall be possible since tools can
ascertain that models are consistent. They also enable hid-
ing of parts of the model during design. Other important
requirements encompass internationalization. A UI shall be
adaptable to different languages and cultures. According to
Weld et al. units of measurement like speed, date, and time
should be provided in a format matching the user’s prefer-
ences [12].

A user interface shall also be consistent. User interaction
shall run along the same lines each time, as Dix et al. de-
scribe [2, p. 584]. At the same time a UI has to comply
to a set of ergonomic standards, like the ones set forth in
ISO 9241-110. An automotive user interface furthermore
has to follow certain automotive guidelines, e. g. the before
mentioned ESoP guidelines.

The architecture needs to be extendable to achieve a con-
sistent UI. It has to integrate hardware built into the car as
well as additional external devices the user wants to employ
within the car. Apart from devices, new functionality can
also be provided by services from the web. The model itself
needs to be extended at runtime to integrate the function-
ality of new applications.

The model also needs to be independent of the employed
hardware. If the user connects their own mp3-player, the
whole system shall be able to respond to commands issued
via buttons as well as speech. Since the user’s devices will
typically not provide an own head-unit HMI or speech UI,
the system will have to translate between these modalities
and each device’s service. Accordingly, a central control
module is needed that is able to distribute respective pre-
sentation and interaction logic to the involved system com-
ponents.

2.2 Model Components
Apart from requirements for the notation different aspects
of the model need to be described. Our model uses a dis-

tinction between the application, tasks and the user inter-
face. We employ the Cameleon Reference Framework which
specifies four levels of abstraction [1]. The framework is il-
lustrated in figure 1. The different abstraction levels are
shown starting with Tasks and Concepts (T&C) at the top-
most level. Tasks can be modeled using different notations
which are evaluated below. Concepts are all domain ob-
jects, in our example the task Play next mp3-track invokes a
method on a song object. The abstract user interface (AUI)
is a modality-independent model of the UI. Concrete user
interface (CUI) is the level at which widgets are employed
and the final user interface (FUI) is the binary code or the
UI in a markup language or hardware mapping. Since the
task model concentrates on a high-level description of the
user’s actions, we use this location in the architecture to
extend the functionality of the system.

Play next
mp3-track

Physical IO

Graphical
2D Button

Physical
Button

Software IO

Speech UI

Voice XMLGTKFunction Key

T&C

AUI

CUI

FUI

Figure 1: Different abstraction levels in the
Cameleon Reference Framework starting with the
task Play next mp3-track. Arrows denote transfor-
mations.

Transformations take place between the different models.
The arrows in figure 1 indicate these transformations. The
UI is generated from abstract representations by applying
respective transformation rules for the HMI design, modal-
ity and capabilities of the target interaction devices. These
rules have to be implemented on the car head-unit. Thus,
the transformations are in control of the manufacturer while
still giving them a flexible solution for integrating unknown
external services. The approach is described in section 3.
Any transformation entails some disadvantages, e. g. there
is an additional overhead for maintaining all mapping rules
between different models. In addition, to transform from one
level of abstraction to another, an accurate mapping has to
be found, so that no relevant information is lost in the pro-
cess. The problem of determining these transformations is
called the mapping problem and has been widely discussed
by Puerta et al. [10].

2.3 Related Work
Recent work on approaches for abstract user interface rep-
resentations are presented and evaluated in this section.

2.3.1 Existing approaches
Several proposals for abstract description standards exist
which can be used to build upon. Concur Task Trees (CTT)
[7] is one of the most widely discussed approaches to de-
scribe human machine interactions in an abstract manner.

Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany

48

In CTT a user interface model is specified by using several
well-defined types of tasks and operators in a hierarchical
top down description. Since there are no descriptions of any
concrete UI elements, the task description remains platform
and modality independent. A concrete UI is generated dur-
ing the interpretation of a task tree either before executing
the application or at runtime.

As demonstrated by Nóbrega et al. [5], the wide-spread mod-
eling language UML [6] provides the same expressiveness
as CTT. As established standard in software development,
structured contents and problem descriptions can be illus-
trated in UML by a topology of class diagrams, activity
diagrams, and statechart diagrams. Thus, an abstract and
formal UI model can be specified in order to be concretized
in further process steps. The description of user interactions
is platform and modality independent and can be translated
to different modalities.

2.3.2 Evaluation
Describing an automotive HMI on a task level with the
widespread CTT-notation quickly resulted in easily under-
standable task trees. However, due to increased concurrency,
e. g. destination entry while listening to music and accepting
an incoming phone call, the tree structure quickly becomes
very complex. Also, CTT does not provide a history con-
cept which is often needed in the automotive domain for task
switching. Usually, the applications open with the last ac-
tive state. Thus, modeling with CTT may be useful for some
interaction tasks but the approach lacks important aspects
needed for more complex task descriptions.

As mentioned before UML provides the same expressiveness
as CTT. Furthermore, the UML notation concepts exceed
CTT, so that the emerged issues can be addressed by UML.
Thus, we considered UML to be the appropriate approach
to model the interactions on abstract level.

3. TRANSFORMATION-BASED UI
Since the car’s HMI needs to integrate new devices during
its lifetime, the preinstalled descriptions of tasks need to be
updated from time to time. This can be done automatically
by attaching an unknown device which provides its own task
descriptions and abstract UI model or by hand through the
user. The UI is then generated on demand. For this process
transformations are needed between the different abstraction
levels. Existing approaches are presented and evaluated in
the following. Then, our transformation-based approach is
outlined.

3.1 Related Work
Several approaches to generate UIs from abstract represen-
tations exist. UIML (User Interface Markup Language) is
an XML-based Meta-Interface Model (MIM) [9]. Apart from
the UI definition, the runtime behavior of an application can
be exemplified. Interfaces for different modalities can be
specified in UIML, however each modality-dependent spec-
ification is directly bound to the underlying abstract de-
scription and restricts the overall flexibility. While UIML is
a widespread and advanced approach for modality and plat-
form independent descriptions, it retains one important dis-
advantage. The described data and their presentations are

administered in one document, thus modification at run-
time is impossible. The model cannot be extended and
modalities cannot be added later on.

UsiXML [11] is an XML-based User Interface Description
Language (UIDL). It offers the possibility to describe a UI
according to the Cameleon Reference Framework. Employ-
ing transformations between the four levels it is possible to
transform the basic Task & Concepts (T&C) model into sev-
eral adequate Final UIs (FUI) matching different platforms
and modalities. Finding all the necessary transformations
is a tedious process however, as the mapping problem illus-
trates.

Another interesting method of how to integrate several ex-
ternal services into the automotive HMI is described by Hild-
isch et al. [3], who propose to describe all possible abstract
UI facets in a semantic ontology hierarchy. The HMI acts
as an interpreter mapping the OWL-based interface descrip-
tion to given FUI-elements provided by the HMI system it-
self. This concept allows generation of UIs which are highly
consistent but has the disadvantage of not being able to in-
tegrate previously unknown concepts at runtime.

3.2 General Approach
In order to build a system which can be extended at runtime
we propose an approach that employs an extendable task
model. The task model contains extension markers at which
submodels of external devices can be attached.

We propose a transformation-based approach similar to the
Cameleon Reference Framework to structure the different
levels of abstraction. In contrast to the Cameleon approach,
we propose to describe the tasks and concepts as well as the
abstract user interface in one step using UML without the
need of transformations between these levels. This alleviates
the mapping problem since no transformations are necessary
for the first level of the framework.

Graphical
2D Button

Physical
Button Speech UI

Voice XMLGTKFunction Key

Beautifi-
cations

Rules/
Patterns

T&C

AUI

CUI

FUI

„play the
next song“Next Track

Concepts

Abstract Interaction

Play next mp3-track

Figure 2: Play next mp3-track on different levels of
abstraction using the adapted framework.

The adapted framework is shown in figure 2. Again the user
wants to carry out the task of playing an mp3-track. The
task can be modeled with activity charts and state machines,
concepts are modeled as classes. Transformations take place

Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany

49

along the arrows, like in the original framework.

3.3 Rule-based Transformations
We aim at flexibility and extendability on the one side and
controlled predictable interaction on the other side. The
proposed system uses rule-based transformations in order to
generate UIs. To this end it employs rules and beautifica-
tions to generate consistent UIs of a high standard.

Rules are divided into different categories. They adjust
the modality of human-machine interaction to match sev-
eral situational conditions i. e. provide automated switching
between screen-based and voice interfaces. We propose to
use patterns for well-known situations and heuristics to de-
cide the modality otherwise. Rules also cover layout and
design aspects as well as user customizations. Especially in
the layout process patterns can be employed. Additionally,
rules can be used to meet special personal requirements (e. g.
a larger font size for the elderly).

Another important aspect are beautifications, as described
by Pederavia et al. [8]. These are additional rules which are
created by a designer who wants to adapt the automatically
generated UI of a specific device. The application of these
rules is repeated on subsequent UI generations each time the
device type is connected to the car. By using beautifications
designers can ensure a corporate design or adapt UIs to their
preferences.

3.4 Contributions
Our proposed architecture is based on the Cameleon Refer-
ence Framework but adapts it for use with UML. This leads
to less transformations and thereby alleviates the mapping
problem. By employing UML the approach can leverage
existing tool support and know-how, thus allowing easier
participation in the design process.

The approach allows for extendability of UIs on an abstract
level. External devices can be fully integrated into the sys-
tem at runtime. The added task descriptions are integrated
into the UI in a way to make the UI appear to come from
a single source. Thus, we achieve a flexible interaction en-
vironment to support different capabilities of current and
future devices.

4. CONCLUSION AND FUTURE WORK
We presented automotive-specific requirements for a flexi-
ble solution to integrate external services into the car. The
possibility to completely control the integration of exter-
nal devices and their user interface into the car was high-
lighted. Methods for abstract user interface representations
were evaluated and our transformation-based approach for
building user interfaces from abstract representations was
motivated.

Our proposed approach can be employed for all kinds of
devices. An already deployed system remains extendable
independant of the car’s life cycle. This flexible integration
of external applications into the automotive interaction en-
vironment pushes the development of modern applications
for in-car infotainment and their safe use.

The envisioned overall architecture was presented based on
well-considered requirements and the evaluation of existing
approaches. Further research for a detailed proof of concept
is needed and scheduled for the near future.

Acknowledgements
This work is originated in the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG) in co-operation with Daimler AG.

5. REFERENCES
[1] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,

L. Bouillon, and J. Vanderdonckt. A unifying
reference framework for multi-target user interfaces.
Interacting with Computers, 15:289–308, 2003.

[2] A. Dix, J. Finlay, G. D. Abowd, and R. Beale.
Human-computer interaction. Pearson, 2004.

[3] A. Hildisch, J. Steurer, and R. Stolle. Hmi generation
for plug-in services from semantic descriptions. In
ICSE Workshops SEAS ’07., page 7, May 2007.

[4] Jan Van den Bergh and K. Coninx. Model-based
design of context-sensitive interactive applications: a
discussion of notations. In Proc. TAMODIA ’04, pages
43–50, New York, NY, USA, 2004. ACM Press.

[5] L. Nóbrega, N. J. Nunes, and H. Coelho. Mapping
concurtasktrees into uml 2.0. In Proc. DSVIS’05,
pages 237–248, Berlin, 2005. Springer.

[6] Object Management Group. UML 2.0 Superstructure
Specification, 2005.

[7] F. Paternò, C. Mancini, and S. Meniconi.
Concurtasktrees: A diagrammatic notation for
specifying task models. In Proc. INTERACT, pages
362–369, 1997.

[8] I. Pederiva, J. Vanderdonckt, S. E. na, I. Panach, and
O. Pastor. The beautification process in model-driven
engineering of user interfaces. In C. Baranauskas,
P. Palanque, J. Abascal, and S. D. J. Barbosa, editors,
Proc. INTERACT, volume 4662/2008 of LNCS, pages
411–425, 2008.

[9] C. Phanouriou. UIML: A Device-Independent User
Interface Markup Language. PhD thesis, Virginia
Polytechnic Institute and State University,
Blacksburg, Virginia, September 2000.

[10] A. Puerta and J. Eisenstein. Towards a general
computational framework for model-based interface
development systems. In Proc. IUI, pages 171–178,
1999.

[11] J. Vanderdonckt, Q. Limbourg, B. Michotte,
L. Bouillon, D. Trevisan, and M. Florins. Usixml: a
user interface description language for specifying
multimodal user interfaces. In Proc. Workshop on
Multimodal Interaction WMI’2004, pages 1–7, 2004.

[12] D. Weld, C. Anderson, P. Domingos, O. Etzioni,
T. Lau, K. Gajos, and S. Wolfman. Automatically
personalizing user interfaces. In Proc. IJCAI-03,
page 7, 2003.

Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany

50

